
MASTER COPY:   PLEASE KEEP THIS  "MEMORANDUM OF TRANSMITTAL"  BLANK FOR REPRODUCTION PURPOSES.  WHEN 
REPORTS ARE GENERATED UNDER THE ARO SPONSORSHIP, FORWARD A COMPLETED COPY OF THIS FORM WITH EACH 
REPORT SHIPMENT TO THE ARO.  THIS WILL ASSURE PROPER IDENTIFICATION.    NOT TO BE USED FOR INTERIM 
PROGRESS REPORTS;  SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS. 

 
 
 
 

MEMORANDUM OF TRANSMITTAL 
 
 
 
U.S. Army Research Office  
ATTN:  AMSRL-RO-BI (TR)  
P.O. Box 12211 
Research Triangle Park, NC  27709-2211 
 
 
 
           
       Reprint (Orig + 2 copies)        Technical Report (Orig + 2 copies) 
 
       Manuscript (1 copy)         Final Progress Report (Orig + 2 copies) 
 
                              Related Materials, Abstracts, Theses (1 copy)          
 
CONTRACT/GRANT NUMBER:           
 
REPORT  TITLE:         
 
is forwarded for your information.
Accepted in: 
IEEE Transactions on Signal Processing

Communications
 

 September 2008 Vol. 26 Issue 7 
 

 
 Poznañ, Poland

September 3-7, 2007

Poznañ, Poland 
  15                                                                                          

April 30, 2007
 

 
 

S 
                                                                                                                                        

IEEE 
 
 
 
 
      
                    
 
                                                                            Sincerely,  

 
 
 
                         
 

          
 
 
 
 
 
 
 

Enclosure 3  

✔

W911NF0410224 (46637CIMUR)

Power Allocation for a MIMO Relay System 
with Multiple-Antenna Users 

                                        
                                                                                 
                                                                                  
                                                                                  Sincerely,

Dr. James Zeidler 
Department of Electrical and Computer Engineering 
University of California, San Diego



REPORT DOCUMENTATION PAGE
Form Approved

                           OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY ( Leave Blank) 2.  REPORT DATE           3.  REPORT TYPE AND DATES COVERED

               

4.  TITLE AND SUBTITLE
               
          

5.  FUNDING NUMBERS
          
          

6.  AUTHOR(S)
          
          

          
          
          

7.  PERFORMING ORGANIZATION NAME(S) AND  ADDRESS(ES)
                  
              
          

8.  PERFORMING ORGANIZATION
     REPORT NUMBER           
            
               

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

    U. S. Army Research Office
    P.O. Box 12211
    Research Triangle Park, NC 27709-2211

10.  SPONSORING / MONITORING
       AGENCY REPORT NUMBER
          
          
          
          
          

11.  SUPPLEMENTARY NOTES
      The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a.  DISTRIBUTION / AVAILABILITY STATEMENT

          Approved for public release;  distribution unlimited

12 b.  DISTRIBUTION CODE
          
          
                         

13.  ABSTRACT (Maximum 200 words)
                                                                                                                                                                                                                                                                            
          
          
          
          
          
          
          
           
          
           
          
           
          
           
     

14.  SUBJECT TERMS
             
          

15.  NUMBER OF PAGES
                           
                       

          
            

16.  PRICE CODE
          
            

17.  SECURITY CLASSIFICATION
       OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
       ON THIS PAGE

UNCLASSIFIED

19.  SECURITY  CLASSIFICATION
       OF ABSTRACT

UNCLASSIFIED

20.  LIMITATION OF  ABSTRACT

U
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
                                            298-102

Enclosure 1

Jan. 2010 Manuscript 2010

Power Allocation for a MIMO Relay System 
with Multiple-Antenna Users

Yuan Yu and Yingbo Hua

W911NF0410224 (46637CIMUR)

N/A

N/A

N/A

A power allocation or scheduling problem 1 is studied for a multiuser MIMO wireless relay system 
where there is a non-regenerative relay between one access point and multiple users. Each node in the 
system is equipped with multiple antennas. The purpose of this study is to develop fast algorithms to 
compute the source covariance matrix (or matrices) and the relay transformation matrix to optimize 
a system performance. We consider the minimization of power consumption subject to rate constraint 
and also the maximization of system throughput subject to power constraint. These problems are nonconvex 
and apparently have no simple solutions. In this paper, a number of computational strategies 
are presented and their performances are investigated. Both uplink and downlink cases are considered. 
The use of multiple carriers is also discussed. Moreover, a generalized water-filling (GWF) algorithm is 
developed to solve a special class of convex optimization problems. The GWF algorithm is used for two 
of the strategies shown in this paper.

29

N/A

Network of MIMO links, medium access control, space-time power allocation, space-time power 
scheduling, multiuser MIMO relays, convex optimization, non-convex optimization, generalized 
water filling.

mjplummer
Stamp



1

Power Allocation for a MIMO Relay System

with Multiple-Antenna Users
Yuan Yu and Yingbo Hua,Fellow, IEEE

Abstract

A power allocation or scheduling problem1 is studied for a multiuser MIMO wireless relay system

where there is a non-regenerative relay between one access point and multiple users. Each node in the

system is equipped with multiple antennas. The purpose of this study is to develop fast algorithms to

compute the source covariance matrix (or matrices) and the relay transformation matrix to optimize

a system performance. We consider the minimization of power consumption subject to rate constraint

and also the maximization of system throughput subject to power constraint. These problems are non-

convex and apparently have no simple solutions. In this paper, a number of computational strategies

are presented and their performances are investigated. Both uplink and downlink cases are considered.

The use of multiple carriers is also discussed. Moreover, a generalized water-filling (GWF) algorithm is

developed to solve a special class of convex optimization problems. The GWF algorithm is used for two

of the strategies shown in this paper.

Index Terms

Network of MIMO links, medium access control, space-time power allocation, space-time power

scheduling, multiuser MIMO relays, convex optimization, non-convex optimization, generalized water

filling.

Copyright (c) 2008 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Y. Yu and Y. Hua (corresponding author) are with the Department of Electrical Engineering, University of California, Riverside,

CA, 92521. Emails: yyu@ee.ucr.edu and yhua@ee.ucr.edu. This work was supported in part by the U. S. Army Research Office

under the MURI Grant No. W911NF-04-1-0224, the U. S. Army Research Laboratory under the Collaborative Technology

Alliance Program, and the U. S. National Science Foundation under Grant No. TF-0514736.

1The two terms “power scheduling” and “power allocation” are used interchangeably in many cases in the literature. But the

former stresses the computation of the latter in advance.
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I . INTRODUCTION

Wireless relays are known to be useful to increase the coverage of wireless communications under

power and spectral constraints. A wireless relay can be regenerative or non-regenerative. A regenerative

relay requires digital decoding and re-encoding at the relay, which can cause a significant increase of

delay and complexity. A non-regenerative relay does not need any digital decoding and re-encoding at

the relay, which is a useful advantage over regenerative relays.

Recently, there have been many research efforts on non-regenerative MIMO relay systems [1], [2],

[3], [4], [5], [6], [7], [8], [9]. A non-regenerative MIMO relay applies a transformation matrix, also

called relay matrix, to its received signal vector and then forwards it to the next node. The MIMO relay

formulation in [3] includes the multicarrier relay problem in [10] as a special case. This paper continues

to address non-regenerative MIMO relay systems. In particular, we consider power allocation problems.

In the context of MIMO relays, a power allocation problem is about the determination of the source

covariance matrix and the relay matrix to maximize a system performance.

For a single-user two-hop MIMO relay system, an optimal structure of the relay matrix that maximizes

the source-to-destination mutual information was presented in [1] and [2], and an optimal structure for

both the source covariance matrix and the relay matrix was established in [3]. The optimality of this

structure, which is essentially a diagonalization or decoupling of the entire relay system into a set of

parallel scalar sub-systems, is recently established in [5] for a broader class of objective functions known

as Schur-convex or Schur-concave functions. Furthermore, this elegant structure is also shown in [6] to

be optimal for a multi-hop MIMO relay system of any number of hops.

For multiuser MIMO relay systems, however, the above mentioned property does not hold any more.

Finding the source covariance matrix and the relay matrix to maximize a system performance is generally

a difficult task. Prior efforts on multiuser MIMO relay systems are reported in [7], [8] and [9]. In these

works, each user is assumed to have a single antenna. Part of the reason for this assumption was to

simplify the problem. Additional references on MIMO relays can be found in [11].

In this paper, we focus on a multiuser two-hop MIMO relay system where each node is equipped

with multiple antennas. For this problem, not only the diagonal structure as shown in [1], [2], [3] and

[5] is no longer optimal, but also the uplink-downlink duality property shown in [12] and [9] no longer

applies. This makes the optimal power allocation a difficult task. Facing the challenge unsolved by others,

we will present a number of computational strategies to search for the best possible power allocation.

We will consider both uplink and downlink problems. We will also consider both system throughput
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maximizationand power consumption minimization. These algorithms are summarized in Table I and

discussed in detail in this paper. These algorithms are designed to solve the power allocation problems

more general than those treated before. In particular, for a problem treated in [7], our approach can yield

much better results than the approach developed there.

We assume that all channel matrices are known to a central scheduler and to the transmitters and

receivers if needed. Except for Algorithm 1, all other algorithms in Table I are not mathematically proven

to yield globally optimal results for their corresponding problems. However, Algorithm 1 is based on a

reformulation of the original problem, which essentially approximates the original non-convex problem

by a convex problem. Because of this approximation, there is a significant penalty to the performance of

Algorithm 1 as shown later in Section VI.

We will also develop a generalized water filling (GWF) theorem and the corresponding GWF algorithm

to solve with global optimality a special type of convex optimization problems. The GWF algorithm is a

useful building block for two of the power allocation algorithms summarized in Table I. In the literature

there are other types of algorithms also called generalized water filling. But they were actually designed

for different problems. Our GWF algorithm is a generalization of the conventional water filling algorithm

from single power constraint to multiple power constraints.

In Section II, the GWF theorem is presented. In Section III, we treat a multiuser MIMO relay downlink

system. We present power allocation algorithms for maximizing the system throughput (i.e., sum rate)

under a power constraint, and power allocation algorithms for minimizing the system power consumption

under individual user rate constraints. In Section IV, we deal with similar issues for the uplink case. In

Section V, we show how to apply our algorithms for joint multicarrier power allocation. In Section VI,

simulations results are presented to illustrate the performances of our algorithms. This study confirms that

power allocation affects the system performance significantly and developing fast algorithms for power

allocation is critically important.

II. A G ENERALIZED WATER-FILLING ALGORITHM

Consider the following convex optimization problem:

min
Q≥0

J
.= − log |I + HQHH | (1)

s.t. tr{BiQBH
i } ≤ Pi, ∀i ∈ {1 . . . m}

whereH andBi are complex matrices,Q is a complex positive semi-definite matrix, andPi are positive

numbers. Without its base specified,log has the natural basee. If m = 1, the solution to the above
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problemcan be found by a well known water-filling algorithm. It is a fast algorithm for this particular

case. Ifm > 1, however, there appears no fast algorithm available in the prior literature except for the

general purpose convex optimization programs such as the CVX package designed for Matlab [13]. We

now introduce a special purpose algorithm, referred to as generalized water-filling (GWF) algorithm, to

solve the problem in (1). The GWF algorithm is based on the following GWF theorem:

Theorem 1:The solution to (1) is given by:

Q = K−HV(I−Σ−2)+VHK−1 (2)

whereK = (
∑m

i=1 µiBH
i Bi)1/2 (assumed to be non-singular),V andΣ are determined from the SVD

HK−H = UΣVH , (·)+ replaces all negative diagonal elements by zeros and leaves all non-negative

diagonal elements unchanged, andµ = (µ1, · · · , µm) are the solution to the following dual problem:

max
µ≥0

− log |I + HQHH |+
m∑

i=1

µi(tr(BiQBH
i )− Pi) (3)

s.t. Q = K−HV(I−Σ−2)+VK−1.

To our knowledge, this theorem is new. The proof of this theorem and an algorithm for computing

µ are given in Appendices A and B, respectively. A complete Matlab script of the GWF algorithm is

available at http://www.ee.ucr.edu/˜yhua/GWF.pdf. As illustrated by a simulation example in Appendix

C, the GWF algorithm can achieve the same accuracy as CVX, and the former has a much faster speed

than the latter when the dimension ofµ is much smaller than that ofQ. The GWF algorithm is useful for

more applications than those shown in this paper. For example, if one wants to design a source covariance

matrix to maximize the data rate of a MIMO link and also wants to keep the interference from this source

to other neighboring nodes under certain limits, such a problem can be directly formulated as (1).

III. M ULTIUSER MIMO D OWNLINK RELAY

We first consider the multiuser MIMO downlink relay system as illustrated in Fig. 1, wherex ∈ CM×1

denotes the signal transmitted from the source equipped withM antennas,F ∈ CM×M the transformation

matrix performed by the non-regenerative relay also equipped withM antennas, andyi ∈ CN×1 the signal

received by the useri equipped withN antennas. Furthermore,H ∈ CM×M denotes the channel matrix

between the source and the relay,Hi ∈ CN×M is the channel matrix between the relay and the useri,

andn, n1, · · · , nK are the zero-mean Gaussian noises at the relay and theK users. Here, we assume

that all the users are equipped with the same number of antennas. The transmission from the source to

the relay is assumed to be orthogonal (in time and/or frequency) to the transmission from the relay to
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all users. We also assume that the direct link between the source and any of the users is very weak and

negligible.

Note that if the actual numbers of antennas at the users, relay or source are different from what is

described above, we can always add imaginary dummy antennas to make up the numberM or N . The

effectiveH ∈ CM×M or Hi ∈ CN×M may have zero rows or zero columns, which however do not affect

the expressions of our results.

The signaly received at the relay, the signalr transmitted from the relay, and the signalyi received

by the useri can be expressed as follows:

y = Hx + n (4)

r = Fy = FHx + Fn (5)

yi = Hir + ni = HiFHx + HiFn + ni (6)

If n has a covariance matrixCn, we can writeC−1/2
n y = C−1/2

n Hx + C−1/2
n n where the noise term

C−1/2
n n has the covariance matrix equal to the identity matrix. So, provided that the noise covariance

matrices ofn andni are known, we can assume for convenience that they are the identity matrices. We

now defineHH
c = [HH

1 , . . . ,HH
K ], yH

c = [yH
1 , . . . ,yH

K ] andnH
c = [nH

1 , . . . ,nH
K ]. Then, using (6) for all

i, we have

yc = HcFHx + HcFn + nc (7)

This is an effective channel model between the source and all users.

A. Maximization of Sum Rate under Power Constraint and ZFDPC (Algorithms 1-2)

The problem of maximizing the sum rate for all users under a power constraint for the downlink case

was considered in [7] where each user has a single antenna. The authors also assume the use of zero

forcing dirty paper coding (ZFDPC) [14]. We now extend the approach in [7] to users with multiple

antennas.

Define the QR decomposition of theKN×M matrix Hc asHc = RQ, whereQ is anM×M unitary

matrix (which is not the sameQ in section II) andR is a KN ×M lower triangular matrix. Define the

SVD of the channel matrixH as H = UhΣhVH
h whereΣh = Λ1/2

h = diag(λh,1, λh,2, . . . , λh,N )1/2

with descending diagonal elements, andUh andVh are unitary.

We assume that the source precoder generatesx = Axs where s contains i.i.d. symbols of unit

variance andAx is such that the source covariance matrix isΠx = E{xxH} = AxAH
x = VhΛxVH

h
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with Λx = diag(λx,1, λx,2, · · · , λx,M ). We also assume that the relay matrix is constructed as

F = QHΣfUH
h , Σf = Λ1/2

f = diag(λf,1, λf,2, . . . , λf,N )1/2 (8)

Here, the source covariance matrix is matched to the right singular vectors of the channel matrixH, the

optimality of which for a single user relay system is shown in [3]. The relay matrix here is matched to

the left singular vectors ofH and the unitary matrixQ of Hc, which is adopted only heuristically without

proof of optimality. As mentioned in [7], the matrixQ is also affected by column permutations ofHc,

which can be further optimized. With the above structures of the precoderAx and the relay matrixF,

(7) becomes

yc = RΣfΣhs + (RΣf ñ + nc) (9)

where ñ = UH
h n. Note that each element ofs represents a scalar stream of data. SinceR is lower

triangular, it is clear from the first term of (9) that the interference from streamj to streami for j > i

is now absent. To remove the interference from streamj to streami for j < i, we can use the dirty

paper coding (DPC) starting from the first stream that corresponds to the first element ofs in (9). For

the first stream, there is no interference from other streams and the conventional coding is applied. For

the second stream, there is the interference from the first stream which is however known to the encoder.

With DPC, the interference from the first stream to the second stream can be virtually eliminated. The

same principle applies to the remaining streams. Then, with DPC, the effective signal to noise ratio for

the ith data stream is

SNRi =
|Ri,i|2λf,iλh,iλx,i∑i
j=1 |Ri,j |2λf,j + 1

(10)

whereRi,j is the (i, j)th element ofR. Note that the use of DPC has removed the mutual interference

between the elements ofs. But the first term (the sum) in the denominator of (10) is due to the noise

forwarded from the relay. The above interference cancellation method based on the QR decomposition

and the DPC is known as zero forcing dirty paper coding (ZFDPC) [14].

The problem of maximizing the sum rate of this downlink relay system under ZFDPC can now be

formulated as

max
Λf ,Λx

R′
sum,d

.=
KN∑

i

log2(1 + SNRi) (11)

s.t. tr{Λx} ≤ Px (12)

tr{Λf (ΛhΛx + I)} ≤ Pf (13)
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wherethe power constraint (12) is for the source, and the power constraint (13) is for the relay. In [7],

the problem (11) is solved by a geometric programming under a high SNR approximation, which will

be referred to as Algorithm 1. Note that a weighted sum rate can be used for all sum rate maximization

algorithms. But for convenience, we choose the unit weights.

Next, we present an algorithm without the high-SNR assumption, referred to as Algorithm 2. We will

search forΛf andΛx in an alternate fashion, where each cycle of the alternation is as follows.

1) Source optimization with fixedΛf : It is easy to verify that with any fixedΛf , the problem (11)

is a special case of the problem (1) shown in Section II, and hence the optimalΛx can be found by the

GWF algorithm.

2) Relay optimization with fixedΛx: With any fixedΛx, the optimalΛf can be found by maximizing

the following penalized function of (11):

L1 (Λf ) .=
KN∑

i

log2

(
1 +

|Ri,i|2λf,iλh,iλx,i∑i
j=1 |Ri,j |2λf,j + 1

)
+

1
t

[
log

(
Pf −

∑

i

λf,i(λh,iλx,i + 1)

)]
(14)

where the second term is the logarithmic barrier function [15] associated with the constraint (13). For

convenience, we will also writeL1 (Λf ) = L1 (λf ) whereΛf = diag(λf ). The gradient ofL1 (λf )

with respect toλf , denoted by∇L1(λf ), is easy to derive, which is omitted. Following the Armijo’s

rule [16], the search algorithm forλf is as follows:

λ
(k+1)
f = λ

(k)
f + βm∇L1(λ

(k)
f ) (15)

wherem is the smallest integer satisfying

L1

(
λ

(k+1)
f

)
− L1

(
λ

(k)
f

)
> σβm

∥∥∥∇L1(λ
(k)
f )

∥∥∥
2

(16)

Pf −
∑

i

λk+1
f,i (λh,iλx,i + 1) > 0 (17)

and 0 < σ < 1 and 0 < β < 1. After convergence of the above search for a fixedt, a new search is

started with an increasedt. When1/t becomes small enough, the search forΛf is considered completed

for the givenΛx.

B. Maximization of Sum Rate under Power Constraint and DPC (Algorithm 3)

ZFDPC is a scalar DPC, which is suboptimal compared to the vector DPC [12], [14], [17]. From now

on, the vector DPC will be referred to as DPC. Given that theK users receive independent messages

from the source, we can write the transmitted vector from the source asx = x1 + · · · + xK and its

(source) covariance matrix asΠx = Π1 + · · · + ΠK whereΠi is the covariance matrix of the signal
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xi meantfor user i. Assuming the use of DPC in the descending order starting from userK, i.e., the

interference from userj to useri for j > i is virtually absent, the achievable data rate for useri in

bits/s/Hz is given by

Id,i = log2

∣∣∣HiFH
(∑i

j=1 Πj

)
HHFHHH

i + HiFFHHH
i + I

∣∣∣
∣∣∣HiFH

(∑i−1
j=1 Πj

)
HHFHHH

i + HiFFHHH
i + I

∣∣∣
(18)

With any given set of the source covariance matricesΠi for i = 1, 2, ..., K, a complete design of the

vector DPC to achieve the rates in (18) can be made by following [17].

In the absence of total power constraint, the maximum possible data rate for useri is independent of

Πj for j > i because of DPC. We can formulate the following problem:

max
Λf ,Λx

Rsum,d
.=

KN∑

i

Id,i (19)

s.t. tr{Πx} ≤ Px (20)

tr{F(HΠxHH + I)FH} ≤ Pf (21)

A joint gradient search ofF, Π1, · · · , ΠK can be performed directly to maximize the following penalized

function of (19):

L2(F,A1, · · · ,AK) .=
KN∑

i

Id,i +
1
t1

log (Px − tr{Πx}) +
1
t2

log
(
Pf − tr{F(HΠxHH + I)FH}) (22)

whereAi is such thatΠi = AiAH
i . We can denote all parameters inF,A1, · · · ,AK by a single vector

p, and the gradient ofL2 with respect top by ∇L2(p). Similar to the case of (14), there are two loops

in the search. The inner loop is for a fixed pair of(t1, t2) where the Armijo gradient search is conducted

until the norm of∇L2(p) is small enough. The outer loop corresponds to the increase of(t1, t2) until

they are large enough.

To show an explicit expression of∇L2(p), it suffices to derive explicit expressions of∂L2
∂F and ∂L2

∂Ai

as follows. Following the rules of matrix differentials [18], we can show

∂L2

∂F
=

KN∑

i

∂Id,i

∂F
− 2

t2

F(HΠxHH + I)
Pf − tr{F(HΠxHH + I)FH} (23)

∂L2

∂Ai
=

KN∑

i

∂Id,i

∂Aj
− 2

t1

Aj

Px − tr{Πx} −
2
t2

HHFHFHAj

Pf − tr{F(HΠxHH + I)FH} (24)

where the derivative ofL2 with respect to the complex matrixF is defined as∂L2
∂F = ∂L2

∂Re{F} +

j ∂L2
∂Im{F} , and the same applies to∂L2

∂Aj
. To derive ∂Id,i

∂F and ∂Id,i

∂Aj
, we first defineXi andYi according

to (18) such thatId,i = log2
|Xi|
|Yi| . Then, using∂ log |X| = tr{X−1∂X} [18], we have∂Id,i =
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(log2 e)tr
{
X−1

i ∂Xi −Y−1
i ∂Yi

}
. It is easy to derive the differentials ofXi and Yi with respect to

the matrixF. Applying the resulting expressions into the above expression, it follows that

∂Id,i = 2(log2 e)Re
(
tr

{
HH

i X−1
i Mi∂FH −HH

i Y−1
i Ni∂FH

})
(25)

whereMi = HiFH
(∑i

j=1 Πj

)
HH + HiF andNi = HiFH

(∑i−1
j=1 Πj

)
HH + HiF, and therefore

∂Id,i

∂F
= 2(log2 e)

(
HH

i X−1
i Mi −HH

i Y−1
i Ni

)
(26)

Similarly, one can verify that forj ≤ i− 1,

∂Id,i

∂Aj
= 2(log2 e)

(
HHFHHH

i

(
X−1

i −Y−1
i

)
HiFHAj

)
(27)

and for j = i, ∂Id,i

∂Aj
= 2(log2 e)

(
HHFHHH

i X−1
i HiFHAj

)
, and for j > i, ∂Id,i

∂Aj
= 0. The above

algorithm is referred to as Algorithm 3.

C. Minimization of Power under Rate Constraint (Algorithms 4-5)

We now address minimization of power under rate constraint. The total power consumed by the source

and the relay is

Pd
.= tr{Πx}+ tr

{
F

(
HΠxHH + I

)
FH

}
(28)

Our problem now is to minimize the total power consumption subject to rate constraints:

min
F,Π1,··· ,ΠK

Pd (29)

subject to Id,i ≥ Ri ∀i ∈ {1, 2, · · · ,K} (30)

whereRi is a desired data rate for useri in bits/s/Hz. To solve this problem, we can search for the

optimal relay matrixF and the optimal source covariance matricesΠ1, · · · ,ΠK in an alternate fashion,

where each cycle of the alternation is shown below.

1) Source optimization with fixedF: We now assume a fixedF and present an algorithm for computing

the optimalΠ1, · · · ,ΠK . We will use the property thatId,i is independent ofΠi+1, · · · ,ΠK and is a

concave function ofΠi, andP is a linear function ofΠ1, · · · ,ΠK . It follows from (28) that

Pd =
K∑

i=1

tr{Qi}+ tr
{
FFH

}
(31)

January 23, 2010 DRAFT



10

where Qi = (I + HHFHFH)H/2Πi(I + HHFHFH)1/2, and we have appliedtr(AB) = tr(BA).

Clearly,Qi andΠi are one-to-one mappings of each other. We now define

Gi = HiFH
(
I + HHFHFH

)−H/2
(32)

Si = GH
i


Gi

i−1∑

j=1

QjGH
i + HiFFHHH

i + I



−1

Gi (33)

whereSi depends onQ1, · · · ,Qi−1 but not any ofQi, · · · ,QK . Then, it follows from (18) that

Id,i = log2 |SiQi + I| (34)

where we have appliedlog |AB + I| = log |BA + I| with AB being conjugate symmetric.

Based on (31) and (34), the optimal solution to the problem (29) forQi, conditional uponF,Q1, · · · ,Qi−1,

is given by the standard water filling solution. Namely, if the eigenvalue decomposition ofSi is denoted

by Si =
∑r

l=1 λi,lui,luH
i,l whereλi,l > 0, then the optimal choice ofQi is Qi =

∑r
l=1(vi− 1

λi,l
)+ui,luH

i,l

where(x)+ = max(x, 0) and vi is such thatId,i = Ri. (Note: In order to keep the solution inside the

interior feasible region to ensure a good convergence behavior, we should chooseId,i slightly larger than

Ri.) Furthermore, with a fixedF, the optimal solution forQ1, · · · ,QK (and henceΠ1, · · · ,ΠK) can

be obtained one at a time sequentially by starting withΠ1.

2) Relay optimization with fixedΠ1, · · · ,ΠK : We now assume thatΠ1, · · · ,ΠK are fixed. To find

the optimalF, we can use the gradient method to minimize the following penalized cost of (29):

L3 = Pd − 1
t

∑

i

log(Id,i −Ri) (35)

where the second term is the barrier, and bothPd andId,i are functions ofF. With the gradient∂L3
∂F , also

denoted by∇L3(F), the Armijo search algorithm for the optimalF is F(k+1) = F(k)−βm∇L3(Fk) where

m is the smallest integer such thatL3(F(k))−L3

(
F(k+1)

)
> σβm‖∇L3(Fk)‖2 andId,i

(
F(k+1)

)−Ri >

0, ∀i ∈ {1, . . . ,K} where0 < β < 1 and0 < σ < 1. Note that the second conditionId,i

(
F(k+1)

)−Ri >

0 is important to ensure that none of the rate constraints is violated. In fact, for good convergence behavior,

for both the source optimization and the relay optimization, we need to keepF,Π1, · · · ,ΠK strictly

inside the interior feasible region of the problem.

The above algorithm for power minimization is referred to as Algorithm 4. Alternatively, we can solve

the problem (29) by a joint gradient search similar to Algorithm 3, which will be referred to as Algorithm

5.
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IV. M ULTIUSER MIMO U PLINK RELAY

A multiuser MIMO uplink relay system is illustrated in Fig. 2, where we denote byHH
i ∈ CM×N the

channel matrix from useri to the relay, and byHH ∈ CM×M the channel matrix from the relay to the

access point. Then, we write the received signal at relay as

yr =
K∑

i=1

HH
i xi + nr (36)

wherexi is the signal transmitted from useri, andnr is the white Gaussian noise at the relay. The signal

transmitted from the relay is

r = FHyr (37)

whereFH is the relay matrix. The signal received at the access point is

yu = HHr + nu

= HHFH
K∑

i=1

HH
i xi + HHFHnr + nu (38)

wherenu is the white Gaussian noise at the access point. We assume the use of successive interference

cancellation (SIC) at the access point, starting from userK. This means that the interference from user

i to userk for i > k is virtually absent, and hence the achievable data rate for userk is

Iu,k = log2

∣∣∣HHFH
(∑k

i=1 HH
i ΠiHi

)
FH + HHFHFH + I

∣∣∣
∣∣∣HHFH

(∑k−1
i=1 HH

i ΠiHi

)
FH + HHFHFH + I

∣∣∣
(39)

whereΠi = E{xixH
i }.

A. Maximization of Sum Rate under Power Constraint (Algorithms 6-7)

The problem of maximizing the sum rate from all users under power constraints is formulated as

follows:

max
F,Π1,··· ,ΠK

Rsum,u =
K∑

i=1

Iu,i = log2

∣∣∣HHFH
(∑K

i=1 HH
i ΠiHi

)
FH + HHFHFH + I

∣∣∣
|HHFHFH + I| (40)

s.t. tr {Πi} ≤ Pi,∀i ∈ {1, 2, · · · ,K} (41)

tr

{
FH

(
K∑

i=1

HH
i ΠiHi + I

)
F

}
≤ Pf (42)

Note that the sum rate of the uplink case is independent of the order of SIC, which is unlike the sum

rate of the downlink case with DPC. To solve this problem, we can optimize each ofF,Π1, · · · ,ΠK in

a cyclic fashion. The basic components in each cycle are shown below.
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1) Source optimization with fixed relay and other sources:If all F,Π1, · · · ,ΠK , but Πi, are fixed,

we can definec = log2 |HHFHFH + I| and

Gi = HHFH




K∑

j=1,j 6=i

HH
j ΠjHj


FH + HHFHFH + I

which are independent ofΠi. Then, we can write

Rsum,u = log2

∣∣Gi + HHFHHH
i ΠiHiFH

∣∣− c

= log2

∣∣∣I + G−1/2
i HHFHHH

i ΠiHiFHG−H/2
i

∣∣∣ + log2 |Gi| − c (43)

The power constraint (42) is equivalent to

tr
{
FHHH

i ΠiHiF
} ≤ Pf − tr



FH




K∑

j=1,j 6=i

HH
j ΠjHj + I


F





It should be clear now that with respect toΠi alone, the problem (40) is equivalent to the convex problem

(1) which is solvable by the GWF algorithm.

2) Relay optimization with fixed sources:If Π1, · · · ,ΠK are fixed, then the problem (40) with respect

to F alone is similar to a problem solved in [3], the solution of which is stated below. Define the SVD

of H asH = UhΣhVH
h whereΣh = diag(σ1, · · · , σM ) with descending diagonal order, and the EVD

of R =
∑K

i=1 HH
i ΠiHi as R = ErΛrEH

r whereΛr = diag(λ1, · · · , λM ) with descending diagonal

order. Then, the optimal structure ofF is given by

F = ErΣfUH
h (44)

whereΣf = diag(f1, . . . , fM )1/2 ≥ 0 which are to be determined. With (44), the problem (40) becomes

max
f1,··· ,fM

Rsum,u =
M∑

i=1

log2

σ2
i λifi + σ2

i fi + 1
σ2

i fi + 1
(45)

s.t.
M∑

i=1

(λi + 1)fi ≤ Pf andfi ≥ 0 ∀i

Then, by the KKT method [15], we have

fi =
1

2σ2
i (1 + λi)

[√
λ2

i + 4λiσ2
i µ− λi − 2

]+

(46)

whereµ is such that
M∑

i=1

1
2σ2

i

[√
λ2

i + 4λiσ2
i µ− λi − 2

]+

= Pf .

The above algorithm that searches forF,Π1, · · · ,ΠK in a cyclic fashion is referred to as Algorithm

6. Note that each component in Algorithm 6 is a convex optimization. Alternatively, we can solve the
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problem(40) by a joint gradient search overF,Π1, · · · ,ΠK simultaneously, which will be referred to

as Algorithm 7. The details of Algorithm 7 are omitted because of its similarity to other joint gradient

search algorithms.

B. Minimization of Power under Rate Constraint (Algorithms 8-9)

The total power consumption for the uplink case is:

Pu =
K∑

i=1

tr{Πi}+ tr

{
FH

(
K∑

i=1

HH
i ΠiHi + I

)
F

}
(47)

With the assumption of SIC, the individual rateIu,i for useri is given by (39). Hence, the problem is

formulated as:

min
F,Π1,··· ,ΠK

Pu (48)

s.t. Iu,i ≥ Ri, ∀i ∈ {1, 2, . . . K} (49)

The problem (48) can be solved by a joint gradient search algorithm (Algorithm 9) which is omitted, or

an alternate optimization algorithm (Algorithm 8) as shown below.

1) Source optimization with fixed relay:Since the order of the SIC is fromK to 1, Iu,i is independent

of Πi+1, . . . ,ΠK , which is a property also shared in the downlink case. With fixedF,Π1, · · · ,Πi−1,

the optimalΠi can be found by a convex optimization same as in section III-C1.

2) Relay optimization with fixed sources:Given Π1, · · · ,ΠK , the optimalF can be found by the

following gradient method. Define the following cost with a barrier:

L4 = tr

{
FH

(
K∑

i=1

HH
i ΠiHi + I

)
F

}
− 1

t

∑

i

log(Iu,i −Ri) (50)

It follows that

∂L4

∂F
= 2

(
K∑

i=1

HH
i ΠiHi + I

)
F− 1

t

∑

i

1
Iu,i −Ri

∂Iu,i

∂F
(51)

To derive ∂Iu,i

∂F , we first rewrite (39) asIu,i = log2
|Wi|
|Wi−1| . Similar to the derivation of (26), it can be

shown that

∂Iu,i

∂F
= 2(log2 e)

(
CiW−1

i HH −Ci−1W−1
i−1H

H
)

(52)

whereCi =
(
I +

∑k
j=1 HH

j ΠjHj

)
FH. The rest of the algorithm is the same as in section III-C2.
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V. MULTI -CARRIER EXTENSIONS

In the previous sections, we have assumed that there is a single carrier for power allocation. If one

wants to useMc (orthogonal) carriers for joint power allocation, the previously shown algorithms are

also applicable after the following changes of notations are adopted.

For the downlink case, the signal models shown in (4)-(6) hold except that

x = [x(1)T , · · · ,x(Mc)T ]T ∈ CMMc×1 (53)

y = [y(1)T , · · · ,y(Mc)T ]T ∈ CMMc×1 (54)

n = [n(1)T , · · · ,n(Mc)T ]T ∈ CMMc×1 (55)

H = diag[H(1), · · · ,H(Mc)] ∈ CMMc×MMc (56)

r = [r(1)T , · · · , r(Mc)T ]T ∈ CMMc×1 (57)

yi = [yi(1)T , · · · ,yi(Mc)T ]T ∈ CNMc×1 (58)

ni = [ni(1)T , · · · ,ni(Mc)T ]T ∈ CNMc×1 (59)

Hi = diag[Hi(1), · · · ,Hi(Mc)] ∈ CNMc×MMc (60)

andF ∈ CMMc×MMc , where for examplex(m) denotes the signal transmitted from the access point on

themth carrier. Note that the optimalF is not necessarily block diagonal. In other words, the relay may

use a different carrier to forward a stream of data that was received by the relay on another carrier [10].

Good (if not globally optimal) choices ofF along with the source covariance matrices at all carriers can

be determined by any of the power allocation algorithms. For the uplink case, the signal models shown

in (36)-(38) also hold after a similar change of definitions of the notations.

These notational changes do not affect any of the algorithms shown in this paper as long as the power

constraint is for the sum power over all carriers and the rate of interest is also the sum rate over all

carriers. However, the complexity of these algorithms will increase because of the increased dimensions.

VI. SIMULATION RESULTS

For convenience of reference, all algorithms presented in Sections III and IV are summarized in Table

I. For the simulation examples shown below, a sample set of computational times of all algorithms for a

random channel realization and a random initialization are listed in the last line in Table I. All algorithms

have roughly the same speed except Algorithm 1 which uses CVX and is much slower than others for

a single run. Algorithm 1 uses geometric programming as proposed in [7], for which the GWF is not
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applicable.However, unlike other algorithms, Algorithm 1 is globally convergent and needs no multiple

runs associated with multiple initializations. When multiple runs are considered for other algorithms, they

may become effectively slower than Algorithm 1. However, one can use the result from Algorithm 1 (for

down link only) as an initialization for Algorithm 2 for a new research, which will be further discussed

later.

Next, we show simulation examples to compare these algorithms. We assume that there are two users

K = 2, each user is equipped with two antennasN = 2, the relay and the access point are both

equipped with four antennasM = 4. A single carrier is assumed. Each of the channel parameters is

realized independently using a complex Gaussian distribution with zero mean and unit variance. As

assumed throughout this paper, every entry of the noise vectors has zero mean and unit variance. The

performance in terms of either the sum rate or the total power is based on an average over 50 channel

realizations. Our experience with 100 or more channel realizations did not lead to any significant change

of results. Unless mentioned otherwise, the search conducted by each algorithm (except Algorithm 1

which is globally convergent) was initialized randomly, 20 random initializations were chosen for each

realization of channel matrices, and the best result from the 20 initializations were selected for computing

the performance. We have found that the performance difference between the “best” and “worst” from 20

initializations can be up to20%. In general, the more initializations are used, the better is the chance the

optimal solution is found. But the computational cost increases as the number of initialization increases.

Figure 3 compares the averaged sum rates achieved by the downlink Algorithms 1-3 versus the relay

powerPf . The power at the source is fixed atPx = 1. Algorithm 1 is based on the geometric programming

proposed in [7]. Both Algorithms 1-2 are based on ZFDPC while Algorithm 3 is based on DPC. For

Algorithm 2, there are two curves in this figure. For the lower curve, we used the results from Algorithm 1

as initializations for Algorithm 2. For the upper curve, we used random initializations. We see that except

for the region of small relay power, Algorithm 1 yielded the least sum rate among the three algorithms

while Algorithm 3 yielded the largest sum rate. In theory, Algorithm 3 should yield the largest sum

rate for the entire region of relay power if a global optimum (including the optimal ordering of the

DPC) is achieved. This figure suggests that in the small relay power region, Algorithm 3 was trapped

in unfavorable local minima. Since ZFDPC and DPC are different coding schemes, the results from

Algorithms 1-2 cannot unfortunately be used as good initializations for Algorithm 3. The complexity of

DPC is much more complex than that of ZFDPC.

Figure 4 compares the averaged total power consumption required by the downlink Algorithms 4-5

versus individual rate constraint. Also shown in this figure is the power consumption based on the identity
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relay matrix, i.e.,F = I, while the source covariance matrix is optimized by the source optimization

subroutine in Algorithm 4. Algorithm 4 uses cyclic search while Algorithm 5 uses joint gradient search.

The search directions for cyclic search are more limited than the joint gradient search. We see that when

the date rate is high, the difference of power consumption is very large. The power consumption from

Algorithm 5 is the least, i.e., the best.

Figure 5 compares the averaged sum rates achieved by the uplink Algorithms 6-7 versus the power

constraint at the relay. The source power is fixed atPi = 1 for all i. It turns out that the two algorithms

yield the same results. The relay optimization and the source optimization in Algorithm 6 (which is

cyclic) are both convex, and Algorithm 7 uses the joint gradient search. The lower curve in this figure

is based on the identity relay matrix, i.e.,F = I, while the source covariance matrices of all users are

optimized by the source optimization subroutine in Algorithm 6.

Figure 6 compares the averaged total power consumption required by the uplink Algorithms 8-9 versus

a common data rate of all users. Also shown in this figure is a curve based on the identify relay matrix,

i.e., F = I, while the source covariance matrices of all users are optimized by the source optimization

subroutine in Algorithm 8. In this case, the joint gradient search by Algorithm 9 yields better results than

the cyclic search by Algorithm 8.

Finally, Figure 7 illustrates an effect of joint multi-carrier power allocation. Here, the relay system is

for downlink, there are two users (K = 2), each user has two antennas (N = 2), there are four antennas

at the relay node and four antennas at the access point (M = 4), and there are two carriers (Mc = 2).

For each of the two carriers, an independent channel realization was made. The first top curve is the sum

rate over two users and two carriers, which was obtained by the joint multi-carrier power allocation. The

second top curve is the sum rate over two users and two carriers, which was obtained by two separate

single-carrier power allocations. The bottom two curves are the sum rates each summed over the two

users for carrier 1 and carrier 2, respectively. The total power for the two carriers used for the first curve

is twice that for each carrier used for the other curves. The power per carrier is the same for all curves.

We see that there is an improvement of the sum rate by using joint multi-carrier power allocation, which

is expected. However, the improvement is not large. It is known that the distribution of the singular

values of a matrix of i.i.d random variables hardens (becomes invariant) as the dimension of the matrix

increases [19]. Hence, if the number of antennas at each node becomes large, the improvement from the

joint multi-carrier power allocation is expected to disappear.
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VII. CONCLUSION

In this paper, we have developed several computational strategies for a multiuser MIMO relay system

where each node may be equipped with multiple antennas. The complexities of these algorithms are

about the same, but their performances can be very much different. Although the central problem is

non-convex, the joint gradient search for the relay matrix and the source covariance matrices, with

multiple random initializations, has consistently yielded the best result. The use of logarithmic barrier

functions, which is a key approach of the interior-point optimization methods, has been very effective

for constrained optimizations. But for one case, the cyclic (or alternating) search for the relay matrix and

the source covariance matrices yielded results similar to those by the joint gradient search. The GWF

algorithm shown in this paper is a faster alternative to the CVX algorithm (or package) to solve the

convex problem (1). In applications with practical coding methods, the rate-versus-power model of each

link may need to be revised with simple penalty factors while the power allocation algorithms shown in

this paper are still applicable. This paper has shown that fast algorithms for power allocation are very

important to achieve the full potentials of MIMO relay systems with multiple-antenna users.

APPENDIX A

PROOF OF THEOREM1

For anyQ ≥ 0 (i.e., positive semi-definite), we can writeQ = AAH whereA is a full column rank

matrix. With respect toA , we can write the following Lagrangian function of (1):

L = − log
∣∣I + HAAHHH

∣∣ +
m∑

i=1

µi

(
tr

{
BiAAHBH

i

}− Pi

)
(61)

The gradient ofL with respect toA can be found by using∂ log |X| = tr(X−1∂X), ∂(XXH) =

(∂X)XH + X∂XH and other basic tools [18]. The result is

∂L

∂AH

.=
∂L

∂Re(A)T
− j

∂L

∂Im(A)T
= −2AH

(
HH

(
I + HAAHHH

)−1
H−

m∑

i=1

µiBH
i Bi

)
(62)

Then, the complete K.K.T. conditions [15] of the problem (1) with respect toA can be written as

−AH

(
HH

(
I + HAAHHH

)−1
H−

m∑

i=1

µiBH
i Bi

)
= 0 (63)

tr
{
BiAAHBH

i

}− Pi ≤ 0 (64)

µi ≥ 0 (65)

µi

(
tr

{
BiAAHBH

i

}− Pi

)
= 0 (66)
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wherei = 1, · · · ,m.

Although the problem (1) with respect toA is not convex, we now show that the generalized KKT

conditions [15] of the problem (1) with respect toQ ≥ 0, which is convex, are equivalent to (63)-(66).

ConsiderL as in (61) withAAH replaced byQ. It follows that

∂L

∂Q
= −HH

(
I + HQHH

)−1
H +

m∑

i=1

µiBH
i Bi (67)

We define a vector operator for a complex conjugate symmetric matrix as follows:

vec(Q) .=


 vec(Re{Q})

vec(Im{Q})




Here,vec(Re{Q}) stacks up all elements fromRe{Q}, andvec(Im{Q}) stacks up all elements from

Im{Q}. AssumeQ ∈ Cn×n. Then, vec(Q) ∈ R2n2×1. Now, based on (5.95) in [15], we have the

following sufficient generalized KKT conditions:

vec

(
−HH

(
I + HQHH

)−1
H +

m∑

i=1

µiBH
i Bi

)
− ω = 0 (68)

tr
{
BiQBH

i

}− Pi ≤ 0 (69)

µi ≥ 0 (70)

µi

(
tr

{
BiQBH

i

}− Pi

)
= 0 (71)

ωT vec(Q) = 0 (72)

wherei = 1, · · · ,m, ω ∈ R2n2×1. Also, Q ∈ K .= {Q′ | Q′ ≥ 0}, andω is in the dual cone ofK, i.e.,

ω ∈ KD .= {ω|ωT vec(Q′) ≥ 0 ∀ Q′ ≥ 0}. The term−ω in (68) is due to the constraint−Q ≤ 0, for

which we have used∂vecT (Q)
∂vec(Q) = I.

Note that for any two complex conjugate symmetric and positive semi-definite matricesA′ and

B′, the following equations are equivalent:A′HB′ = 0 ⇔ tr(A′HB′) = 0 ⇔ Re{A′}T Re{B′} +

Im{A′}T Im{B′} = 0 ⇔ vec(A′)T vec(B′) = 0. It is then easy to show, similar to Example 2.24 in

[15], thatK = KD. Then, as long as∂L
∂Q ≥ 0 andQ = AAH , we have that (68) impliesω ∈ KD, (63)

implies (72) and vice versa. On the other hand, if∂L
∂Q ≥ 0 doesnot hold, thenω ∈ KD does not hold

because of (68). Therefore, if and only if∂L
∂Q ≥ 0, (63)-(66) are equivalent to (68)-(72).

Next, we construct an optimal structure ofQ based on (63). SinceKKH =
∑m

i=1 µiBH
i Bi andK is

non-singular, (63) is equivalent to

−AHK
(
K−1HH

(
I + HK−HKHAAHKK−1HH

)−1
HK−H − I

)
= 0 (73)
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Definethe SVD ofHK−H as

HK−H = UΣVH = U


 Σ1

Σ2




(
V1 V2

)H
(74)

whereU andV are square unitary matrices,Σ1 (square) andΣ2 (possibly non-square) are diagonal, all

the diagonal elements ofΣ1 are larger than one, and all the diagonal elements ofΣ2 are less than or

equal to one. We now assume thatKHA = V1T whereT is non-singular. Then, (73) is equivalent to

the following:

−AHK
(
K−1HH

(
I + HK−HKHAAHKK−1HH

)−1
HK−H − I

)
= 0

(a)⇐=⇒ −THVH
1

(
VΣTUH

(
I + UΣVHV1TTHVH

1 VΣTUH
)−1

UΣVH − I
)

= 0

(b)⇐⇒ −TH




(
Σ1 0

)

I +


 Σ1

0


TTH

(
Σ1 0

)


−1

Σ−
(

I 0
)

VH = 0

(c)⇐⇒ −TH




(
Σ1 0

)

I−


 Σ1

0


(

(TTH)−1 + Σ2
1

)−1
(

Σ1 0
)

Σ−

(
I 0

)

VH = 0

(d)⇐=⇒ −TH
(((

Σ2
1 0

)
−Σ2

1

(
(TTH)−1 + Σ2

1

)−1
(

Σ2
1 0

))
−

(
I 0

))
VH = 0

(e)⇐⇒ Σ2
1 −Σ2

1

((
TTH

)−1
+ Σ2

1

)−1
Σ2

1 − I = 0

(f)⇐=⇒ Σ2
1 −Σ2

1

(
Σ−2

1 −Σ−2
1

(
TTH + Σ−2

1

)−1
Σ−2

1

)
Σ2

1 − I = 0

(g)⇐⇒ TTH = I−Σ−2
1 (75)

where for(c) and (f) we used the matrix inverse lemma. We see that sinceTTH = I−Σ−2
1 > 0, the

above solution forT, and hence the correspondingA, is a valid solution.

The above solution ofKHA has the same span asV1. A simple observation of the above analysis

also suggests that as long as the span ofKHA belongs to that ofV1, a matrix T exists such that

KHA = V′
1T satisfies (73) whereV′

1 is a sub-matrix (selected columns) ofV1. On the other hand, if

the span ofKHA contains a vector fromV2, i.e., KHA = V′
2T whereV′

2 has a column vector from

V2, then there does not exist such a matrixT for A to satisfy (73), or equivalently the corresponding

“solution” TTH would be non-positive semi-definite which contradicts to the fundamental nature of

TTH . Therefore, the highest rank solution ofA to satisfy (73) is given byA = K−HV1T where
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T =
(
I−Σ−2

1

)1/2
. Equivalently, the highest rank solution ofQ to satisfy (73) is given by

Q = AAH = K−HV1TTHVH
1 K−1

= K−HV1(I−Σ−2
1 )VH

1 K−1

= K−HV(I−Σ−2)+VHK−1 (76)

whereΣ−2 = (ΣTΣ)−1, the inverse of a zero (squared singular value) would be treated as positive

infinity, and (I−Σ−2)+ applies(x)+ .= max(x, 0) on each diagonal element of itself.

With (76) and (67), one can verify that

∂L

∂Q
= KV

(
I−ΣT

(
I + Σ

(
I−Σ−2

)+ ΣT
)−1

Σ
)

VHKH ≥ 0 (77)

Note that theith diagonal element of the diagonal matrix betweenV andVH in (77), denoted bydi, is

di = 1− σ2
i

(
1 + σ2

i (1− σ−2
i )+

)−1

=





1− σ2
i > 0 if σ2

i < 1

0 if σ2
i ≥ 1

(78)

whereσi is the ith diagonal element ofΣ. If we did not use the highest rank solution forQ as in (76),

then there would be adi = 1 − σ2
i < 0 associated with aσ2

i > 1 and hence (77) would not hold and

hence the correspondingω from (68) would not belong toKD.

With the optimalQ given in (76), which is a function ofµ = [µ1, · · · , µm], the remaining problem

is to find the optimalµ. Since the effective KKT equations forµ are the same for both (63)-(66) and

(68)-(72), the optimalµ can be found by using either the dual problem of (1) with respect toA or the

dual problem of (1) with respect toQ. Choosing the former, we can find the optimalµ by solving (3).

The dual problem of (1) with respect toQ is the same as (3) except for the additional term−vecT (Q)ω

which is however maximized to zero byω for any µ.

The proof of the theorem is completed. In the next section, we show how to find the optimalµ in

more details. For the primal problem (1),Q has2n2 real elements. (Even under the constraintQ = QH ,

Q has n(n+1)
2 free real-part elements,n(n−1)

2 free imaginary-part elements, and hence totaln2 free real

elements.) For the dual problem (3), there arem real variables inµ. If m < n2, it is reasonable to expect

the dual problem to be less costly to solve.
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APPENDIX B

COMPUTATION OF THE DUAL PROBLEM IN THEOREM 1

Since the dual problem is convex, we can follow the interior-point method [15] and define the following

dual function with logarithmic barrier terms:

D(µ) = − log |I + HQ(µ)HH |+
m∑

i=1

µi(tr(BiQ(µ)BH
i )− Pi) +

1
t

∑

i

log µi (79)

where we useQ(µ) to stress thatQ is a function ofµ. Note that the first two terms in (79) equal

to minQ≥0 L, which we want to maximize subject toµ ≥ 0. For each choice oft, we can apply the

Newton’s method [15] to find the optimalµ, i.e.,

µ(k+1) = µ(k) + γ(k)(∇2D(µ(k)))−1∇D(µ(k)) (80)

wherek denotes the iteration index and the scalarγ(k) is determined by the backtracking line search.

Upon convergence for eacht, we can increaset by a factorδ > 1 and continue a new cycle of the

Newton’s search. The above process continues until1/t is smaller than a pre-specified numberε.

The computation of the gradient vector∇D(µ(k)) and the Hessian matrix∇2D(µ(k)) is straightforward

although the detailed expressions are lengthy. SinceQ(µ) depends on the eigenvalue decomposition of

K−1HHHK−H and the computation ofK =
(∑m

i=1 µiBH
i Bi

)1/2
also needs the eigenvalue decompo-

sition of
∑m

i=1 µiBH
i Bi, we need to use the first-order and second-order differentials of eigenvalues and

eigenvectors. The basic formulas for these differentials can be found in [18]. The detailed expressions of

the gradient and the Hessian are omitted to save space.

To avoid possible numerical problems in computing the differentials of eigenvectors when there are

multiple identical eigenvalues, we added a small random perturbation matrix to
∑m

i=1 µiBH
i Bi in our

program, which proved to be very effective. A complete Matlab script of the GWF algorithm is available

at http://www.ee.ucr.edu/˜yhua/GWF.pdf.

APPENDIX C

A COMPARISON OFGWF AND CVX

To show a comparison of our GWF algorithm with CVX in [13], we ran both algorithms on a desktop

with 2.40GHz CPU. We choseP1 = 1, P2 = 1.5, B1 = I, and used the complex Gaussian distribution
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with zero mean and unit variance to randomly choose each element in the following matrices:

H =




−0.6705 + 0.3791i 0.1469 + 0.4499i −0.2913− 0.3867i 0.1568− 0.0536i

0.2398− 0.3460i −0.0702− 1.0615i −0.4482 + 0.0759i −1.0125 + 0.5067i

−0.8170 + 0.3401i −0.5652 + 0.1424i 0.1243− 0.1684i 0.2645− 0.2377i

−0.7213− 0.5363i −0.1463− 0.3667i −0.7448 + 0.4854i 0.1717 + 0.0345i




B2 =




0.1993 + 0.1027i −0.6859 + 0.4280i 0.1457 + 0.3800i 0.2031 + 0.5548i

0.5582 + 0.2944i −0.3429− 0.4255i 0.5535− 0.8565i 0.6080− 0.5549i

0.3102− 0.1320i 0.1658 + 0.4059i 0.1225 + 0.7685i 0.7242 + 0.1927i

−0.1438 + 1.2477i −0.4989 + 0.3501i 0.0825− 0.8049i −0.5126 + 0.4826i




For the GWF algorithm, the initial elements ofµ(0) were randomly chosen between zero and10−2. We

chose∇D(µ)T (∇2D(µ))−1∇D(µ) < 10−2 as the stopping criterion for the inner loop (for fixedt).

We also choset(1) = 2 and t(i+1) = 2t(i), and finally2/t < 10−4 as the stopping criterion for the outer

loop. We noticed that for eacht, the inner loop converged after about 8 iterations.

At the convergence, the following results from the GWF algorithm and the CVX algorithm were

obtained:

QGWF =




0.3726 0.1804− 0.0634i 0.0470− 0.0795i −0.1740− 0.0078i

0.1804 + 0.0634i 0.2722 −0.0779− 0.1381i −0.1265− 0.1644i

0.0470 + 0.0795i −0.0779 + 0.1381i 0.1643 0.0893 + 0.0208i

−0.1740 + 0.0078i −0.1265 + 0.1644i 0.0893− 0.0208i 0.1909




QCV X =




0.3726 0.1804− 0.0634i 0.0469− 0.0796i −0.1739− 0.0078i

0.1804 + 0.0634i 0.2722 −0.0779− 0.1382i −0.1265− 0.1644i

0.0469 + 0.0796i −0.0779 + 0.1382i 0.1643 0.0894 + 0.0208i

−0.1739 + 0.0078i −0.1265 + 0.1644i 0.0894− 0.0208i 0.1909




These two matrices agree with each other very well. Both GWF and CVX achieve the same value of

capacity 2.6139 in bits/s/Hz (i.e.,−J in (1)). But GWF took 3.40 seconds while CVX took 14.94 seconds.

GWF is about four times faster than CVX. Note that the dimension ofQ used here is larger than that

used for Algorithms 2 and 6 shown in Table I

Figure 8 shows howµ of the GWF converged to the optimal as the outer iterations continued. We

see thatµ2 approaches to zero, which means that the second power constraint is satisfied automatically

while the first power constraint is active. Figure 9 illustrates the capacity (−J) as function of the barrier

constantt.
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TABLE I

SUMMARY OF POWER ALLOCATION ALGORITHMS FOR A MULTIUSERMIMO RELAY SYSTEM. THE SAMPLE RUN TIMES

WERE BASED ON A DESKTOP WITH2.40GHZ CPU,TWO USERS EACH WITH TWO ANTENNAS AND A RELAY WITH FOUR

ANTENNAS.

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7 Alg. 8 Alg. 9

SectionNo. III-A III-A III-B III-C III-C IV-A IV-A IV-B IV-B

Downlink X X X X X
Uplink X X X X

Max Rate X X X X X
Min Power X X X X

ZFDPC X X
DPC X X X
SIC X X X X

Cyclic Search X X X X
Joint Search X X X X X
Useof GWF X X

SampleRun Time in Sec 17.10 5.12 4.38 7.44 6.32 8.15 6.91 4.18 3.92
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Fig. 1. Diagram of a multiuser MIMO relay downlink system.
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Fig. 2. Diagram of a multiuser MIMO relay uplink system.
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Fig. 3. Comparison of downlink Algorithms 1-3: Averaged sum rate versus power constraint at relay. Alg. 2-A

is Algorithm 2 using the best out of 20 random initializations. Alg. 2-B is Algorithm 2 using the results from

Algorithm 1 as initializations.
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Fig. 4. Comparison of downlink Algorithms 4-5: Averaged total power consumption versus individual rate constraint.

The curve on the top is for the identity relay matrix.
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Fig. 5. Comparison of uplink Algorithms 6-7: Averaged sum rate versus relay power constraint. The curves for

Algorithms 6-7 are identical. The lower curve is for the identity relay matrix.
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Fig. 6. Comparison of uplink Algorithms 8-9: Averaged total power consumption versus individual rate constraint.

The curve on the top is for the identity relay matrix.
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Fig. 7. An example of joint multi-carrier power allocation for downlink multi-user MIMO relay system where

K = 2, N = 2, M = 4 andMc = 2. Algorithm 3 was applied with 20 random initializations. The rates shown are

based on a single channel realization for each of the two carriers.
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